The Synthesis of Gold(1) Carbene Complexes using 4-Methylthiazolyllithium

Helgard G. Raubenheimer,* * Fred Scott, * Marita Roos b and Ronald Otte *

^a Department of Chemistry, Rand Afrikaans University, Johannesburg, South Africa

^b Department of Chemistry, University of Pretoria, Pretoria, South Africa

Reaction of various chlorogold(i) complexes with 4-methylthiazolyllithium followed by protonation and alkylation produces new mono- and bis(carbene) complexes.

Comparatively few gold(1) carbene complexes have been prepared, the main entries into this field involving precursor isocyanide complexes,¹ cleavage of the carbon–carbon double bond in electron rich alkenes² and carbene transfer from tungsten pentacarbonyl compounds.³ We now report that various new neutral and cationic amino(thio)carbene complexes can be synthesized in satisfactory yields on addition of lithiated 4-methylthiazole to gold(1) chloride compounds and subsequent protonation or alkylation of the products formed. In this manner unique, stable amino(thio)carbene complexes which also contain phosphine, pentafluorophenyl, 4-methylthiazolyl, or chloride ligands, can be made (Scheme 1).

The synthetic pathways a and b involved simple ligand exchange (with 1) followed by protonation and alkylation to furnish the cationic carbene complex 2 (84% yield) and the neutral aryl(carbene)gold compound 3 (70% yield) after recrystallization from tetrahydrofuran (THF).

Route c was followed to prepare and isolate (as a tetrabutylammonium salt) a gold 'ate' complex 4, which could subsequently be used as an *in situ* precursor for the synthesis of neutral and cationic mono(carbene) 5 and bis(carbene) 6 complexes in high (>70%) yields.

All the reactions were, however, not straightforward. Alkylation of the 'ate' complex with $MeSO_3CF_3$ occurred not on the nitrogen atom as expected, but on a metal-bonded carbon atom to give 7, which was recrystallized (THF) in 19% yield.

When the 'ate' complex, $[AuMe(C=NCMe=CHS)]^-$, was treated with HCl, protonation of the nitrogen did occur, but in addition, the methyl ligand was also protonated and substituted by chloride to produce 8 (route g, 51% yield). A copper analogue of 5 could not be prepared since even protonation occurred on the coordinated carbon atom. Benzothiazolyl-lithium reacted similarly to the title reactant.

The structures of the new compounds were based on elemental analysis (C, H and N), the appearance of molecular

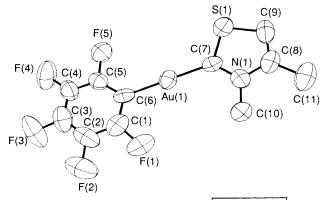
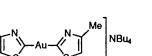
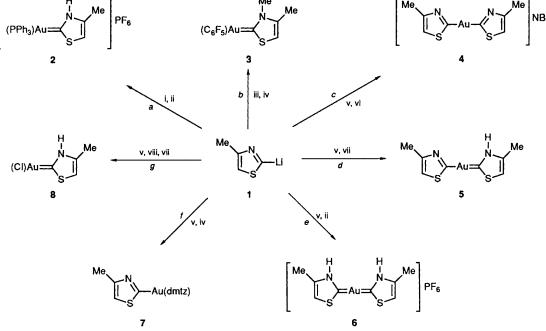




Fig. 1 Molecular structure of [Au(C₆F₅)CNMeCMe=CHS] 3

Scheme 1 Reagents: i, PPh₃AuCl;⁴ ii, HPF₆; iii, $\frac{1}{2}C_6F_5Au(tht)$;⁵ iv, $\frac{1}{2}MeSO_3CF_3$; v, $\frac{1}{2}ClAu(tht)$;⁶ vi, NBu₄Br; vii, $\frac{1}{2}HCl$ (in OEt_2 ; viii, $\frac{1}{2}LiMe$ (tht = tetrahydrothiophene; dmtz = 2,4-dimethylthiazole)

ions of the neutral compounds in their mass spectra, NMR spectra[†] and a single crystal X-ray study of **3**.[‡]

The molecular structure of the linear [angle C(6)-Au-C(7), 178.6(4)°] complex is shown in Fig. 1. The gold-aryl carbon bond of 1.993(10) Å is in accordance with such bonds in other known pentafluorophenyl complexes.7 The gold-carbene

[†] ¹H NMR spectra clearly differentiates between N or C alkylation. The alkylated methyl group in 3 resonates at δ 4.17 whereas the 2-methyl in 7 has a signal at δ 2.47. An unexpected feature of the ¹³C spectra is that only small differences are found in the resonances of the metal-bonded carbons of compounds 4 (alkyl), 5 (both), 6 and 8, which all occur at δ 205 \pm 1. The carbon ecarbon atoms in 2 and 3 resonate at δ 184.6 and 214.5 respectively.

 $\ddagger Crystal data: AuC_{11}F_5H_7NS, M = 477, monoclinic, a = 27.533(2), b$ = 7.292(1), c = 13.154(1) Å, $\beta = 103.92(1)^{\circ}$, U = 2563.5 Å³, Z = 8, D_c = 2.47 g cm⁻³, F(000) = 1760, λ (Mo-K α) = 0.7107 Å, $\mu = 112.26$ cm⁻¹, space group C2/c. 4054 Reflections were collected on an Enraf-Nonius CAD4 diffractometer in the range $3 \le \theta \le 30^{\circ}$ and corrected for Lorentz and polarization effects and absorption. The structure was solved by Patterson and Fourier methods and refined anisotropically with a full matrix method $(1/\sigma^2 F$ -weights) using SHELX 76.6 All hydrogen atoms were placed in calculated positions and refined with a common isotropic temperature factor. Final R =0.028, $R_w = 0.042$ for 2010 unique [>4 $\sigma(I)$] reflections. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

carbon distance is 1.961(9) Å {compare the 2.02(3) Å separation in the carbene complex [Au(Cl)C(NMe₂)Ph]].⁸ The dihedral angle between the planes formed by the two organic ligands is 5.35° and the shortest intermolecular gold-gold distance 3.95 Å.

A detailed study concentrating (i) on the use of other α-deprotonated imine compounds in carbene complex synthesis as well as (ii) on the reactivity of 'ate' complexes towards various insertion reactions, is in progress.

Received, 6th July 1990; Com. 0/03050C

References

- 1 F. Bonati and G. Minghetti, Synth. React. Inorg. Metal-Org. Chem., 1971, 1, 299.
- 2 B. Cetinkaya, P. Dixneuf and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1974, 1827.
- 3 R. Aumann and E. O. Fischer, Chem. Ber., 1981, 114, 1853.
- 4 B. J. Gregory and C. K. Ingold, J. Chem. Soc., B, 1969, 276.
- 5 R. Usón, A. Laguna, M. U. de la Orden and M. L. Arrese, Synth. React. Inorg. Metal-Org. Chem., 1984, 14, 369.
- 6 G. M. Sheldrick, SHELX 76 Program System, University of Cambridge, 1976.
- 7 R. Usón, A. Laguna, M. Laguna, I. Lázaro, A. Morata, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1986, 669.
- 8 U. Schubert, K. Ackermann and R. Aumann, Cryst. Struct. Commun., 1982, 11, 591.